Evals

Agent Evaluation for Multi-Turn Consistency: What Works and What Doesn’t

Agent Evaluation for Multi-Turn Consistency: What Works and What Doesn’t

TL;DR: Multi-turn AI agents need layered evaluation metrics to maintain consistency and prevent failures. Successful evaluation combines session-level outcomes (task success, trajectory quality, efficiency) with node-level precision (tool accuracy, retry behavior, retrieval quality). By integrating LLM-as-a-Judge for qualitative assessment, running realistic simulations, and closing the feedback loop between testing
Navya Yadav
Prompt Management and Collaboration for AI Agents Using Observability and Evaluation Tools

How to Streamline Prompt Management and Collaboration for AI Agents Using Observability and Evaluation Tools

TL;DR Managing prompts for AI agents requires structured workflows that enable version control, systematic evaluation, and cross-functional collaboration. Observability tools track agent behavior in production, while evaluation frameworks measure quality improvements across iterations. By implementing prompt management systems with Maxim’s automated evaluations, distributed tracing, and data curation capabilities,
Kamya Shah