Agent Evaluation for Multi-Turn Consistency: What Works and What Doesn’t
TL;DR:
Multi-turn AI agents need layered evaluation metrics to maintain consistency and prevent failures. Successful evaluation combines session-level outcomes (task success, trajectory quality, efficiency) with node-level precision (tool accuracy, retry behavior, retrieval quality). By integrating LLM-as-a-Judge for qualitative assessment, running realistic simulations, and closing the feedback loop between testing