Maxim Integration for Vercel

Requirements

"ai"
"@ai-sdk/openai"
"@ai-sdk/anthropic"
"@ai-sdk/google"
"@maximai/maxim-js"

Environment Variables

MAXIM_API_KEY=
MAXIM_LOG_REPO_ID=
OPENAI_API_KEY=
ANTHROPIC_API_KEY=

Initialize Logger

import { Maxim } from "@maximai/maxim-js";

async function initializeMaxim() {
  const apiKey = process.env.MAXIM_API_KEY || "";
  if (!apiKey) {
    throw new Error("MAXIM_API_KEY is not defined in the environment variables");
  }

  const maxim = new Maxim({ apiKey });
  const logger = await maxim.logger({
    id: process.env.MAXIM_LOG_REPO_ID || "",
  });

  if (!logger) {
    throw new Error("Logger is not available");
  }

  return { maxim, logger };
}

Wrap AI SDK Models with Maxim

import { openai } from '@ai-sdk/openai';
import { wrapMaximAISDKModel } from '@maximai/maxim-js/vercel-ai-sdk';

const model = wrapMaximAISDKModel(openai('gpt-4'), logger);

Make LLM calls using wrapped models

import { generateText } from 'ai';
import { openai } from '@ai-sdk/openai';
import { wrapMaximAISDKModel } from '@maximai/maxim-js/vercel-ai-sdk';

const model = wrapMaximAISDKModel(openai('gpt-4'), logger);

// Generate text with automatic logging
const response = await generateText({
    model: model,
    prompt: 'Write a haiku about recursion in programming.',
    temperature: 0.8,
    system: 'You are a helpful assistant.',
});

console.log('Response:', response.text);

Working with Different AI SDK Functions

The wrapped model works seamlessly with all Vercel AI SDK functions:

Generate Object

import { generateObject } from 'ai';
import { z } from 'zod';

const response = await generateObject({
    model: model,
    prompt: 'Generate a user profile for John Doe',
    schema: z.object({
        name: z.string(),
        age: z.number(),
        email: z.string().email(),
        interests: z.array(z.string()),
    }),
});

console.log(response.object);

Stream Text

import { streamText } from 'ai';

const { textStream } = await streamText({
    model: model,
    prompt: 'Write a short story about space exploration',
    system: 'You are a creative writer',
});

for await (const textPart of textStream) {
    process.stdout.write(textPart);
}

Custom Metadata and Tracing

Using Custom Metadata

import { MaximVercelProviderMetadata } from '@maximai/maxim-js/vercel-ai-sdk';

const response = await generateText({
  model: model,
  prompt: 'Hello, how are you?',
  providerOptions: {
    maxim: {
      traceName: 'custom-trace-name',
      traceTags: {
        type: 'demo',
        priority: 'high',
      },
    } as MaximVercelProviderMetadata,
  },
});

Available Metadata Fields

Entity Naming:

  • sessionName - Override the default session name
  • traceName - Override the default trace name
  • spanName - Override the default span name
  • generationName - Override the default LLM generation name

Entity Tagging:

  • sessionTags - Add custom tags to the session (object: {key: value})
  • traceTags - Add custom tags to the trace (object: {key: value})
  • spanTags - Add custom tags to span (object: {key: value})
  • generationTags - Add custom tags to LLM generations (object: {key: value})

ID References:

  • sessionId - Link this trace to an existing session
  • traceId - Use a specific trace ID
  • spanId - Use a specific span ID

Streaming Support

import { streamText } from 'ai';
import { openai } from '@ai-sdk/openai';
import { wrapMaximAISDKModel, MaximVercelProviderMetadata } from '@maximai/maxim-js/vercel-ai-sdk';

const model = wrapMaximAISDKModel(openai('gpt-4'), logger);

const { textStream } = await streamText({
  model: model,
  prompt: 'Write a story about a robot learning to paint.',
  system: 'You are a creative storyteller',
  providerOptions: {
    maxim: {
      traceName: 'Story Generation',
      traceTags: {
        type: 'creative',
        format: 'streaming'
      },
    } as MaximVercelProviderMetadata,
  },
});

for await (const textPart of textStream) {
  process.stdout.write(textPart);
}

Multiple Provider Support

import { openai } from '@ai-sdk/openai';
import { anthropic } from '@ai-sdk/anthropic';
import { google } from '@ai-sdk/google';
import { wrapMaximAISDKModel } from '@maximai/maxim-js/vercel-ai-sdk';

// Wrap different provider models
const openaiModel = wrapMaximAISDKModel(openai('gpt-4'), logger);
const anthropicModel = wrapMaximAISDKModel(anthropic('claude-3-5-sonnet-20241022'), logger);
const googleModel = wrapMaximAISDKModel(google('gemini-pro'), logger);

// Use them with the same interface
const responses = await Promise.all([
    generateText({ model: openaiModel, prompt: 'Hello from OpenAI' }),
    generateText({ model: anthropicModel, prompt: 'Hello from Anthropic' }),
    generateText({ model: googleModel, prompt: 'Hello from Google' }),
]);

Next.js Integration

API Route Example

// app/api/chat/route.js
import { streamText } from 'ai';
import { openai } from '@ai-sdk/openai';
import { wrapMaximAISDKModel, MaximVercelProviderMetadata } from '@maximai/maxim-js/vercel-ai-sdk';
import { Maxim } from "@maximai/maxim-js";

const maxim = new Maxim({ apiKey });
const logger = await maxim.logger({ id: process.env.MAXIM_LOG_REPO_ID });
const model = wrapMaximAISDKModel(openai('gpt-4'), logger);

export async function POST(req) {
  const { messages } = await req.json();

  const result = await streamText({
    model: model,
    messages,
    system: 'You are a helpful assistant',
    providerOptions: {
      maxim: {
        traceName: 'Chat API',
        traceTags: {
          endpoint: '/api/chat',
          type: 'conversation'
        },
      } as MaximVercelProviderMetadata,
    },
  });

  return result.toAIStreamResponse();
}

Client-side Integration

// components/Chat.jsx
import { useChat } from 'ai/react';

export default function Chat() {
    const { messages, input, handleInputChange, handleSubmit } = useChat({
        api: '/api/chat',
    });

    return (
        <div>
            {messages.map((m) => (
                <div key={m.id}>
                    <strong>{m.role}:</strong> {m.content}
                </div>
            ))}

            <form onSubmit={handleSubmit}>
                <input value={input} onChange={handleInputChange} placeholder="Say something..." />
                <button type="submit">Send</button>
            </form>
        </div>
    );
}

Resources