Complete guide to using the main Bifrost client methods for chat completions, text completions, and request handling patterns.
// Initialize client
client, initErr := bifrost.Init(schemas.BifrostConfig{
Account: &MyAccount{},
})
defer client.Cleanup() // Always cleanup!
// Make requests
response, bifrostErr := client.ChatCompletionRequest(ctx, request)
func (b *Bifrost) ChatCompletionRequest(
ctx context.Context,
req *schemas.BifrostRequest
) (*schemas.BifrostResponse, *schemas.BifrostError)
message := "Explain quantum computing in simple terms"
response, err := client.ChatCompletionRequest(context.Background(), &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o-mini",
Input: schemas.RequestInput{
ChatCompletionInput: &[]schemas.BifrostMessage{
{
Role: schemas.ModelChatMessageRoleUser,
Content: schemas.MessageContent{ContentStr: &message},
},
},
},
})
if err != nil {
log.Printf("Request failed: %v", err)
return
}
// Access response
if len(response.Choices) > 0 && response.Choices[0].Message.Content.ContentStr != nil {
fmt.Println("AI Response:", *response.Choices[0].Message.Content.ContentStr)
}
func (b *Bifrost) TextCompletionRequest(
ctx context.Context,
req *schemas.BifrostRequest
) (*schemas.BifrostResponse, *schemas.BifrostError)
prompt := "Complete this story: Once upon a time in a digital realm,"
response, bifrostErr := client.TextCompletionRequest(context.Background(), &schemas.BifrostRequest{
Provider: schemas.Anthropic,
Model: "claude-2.1", // Text completion models
Input: schemas.RequestInput{
TextCompletionInput: &prompt,
},
Params: &schemas.ModelParameters{
MaxTokens: bifrost.Ptr(100),
},
})
func (b *Bifrost) ExecuteMCPTool(
ctx context.Context,
toolCall schemas.ToolCall
) (*schemas.BifrostMessage, *schemas.BifrostError)
๐ Learn More: See MCP Integration for complete tool setup and usage patterns.
func (b *Bifrost) Cleanup()
client, initErr := bifrost.Init(config)
if initErr != nil {
log.Fatal(initErr)
}
defer client.Cleanup() // Ensures proper resource cleanup
conversation := []schemas.BifrostMessage{
{
Role: schemas.ModelChatMessageRoleSystem,
Content: schemas.MessageContent{ContentStr: &systemPrompt},
},
{
Role: schemas.ModelChatMessageRoleUser,
Content: schemas.MessageContent{ContentStr: &userMessage1},
},
{
Role: schemas.ModelChatMessageRoleAssistant,
Content: schemas.MessageContent{ContentStr: &assistantResponse1},
},
{
Role: schemas.ModelChatMessageRoleUser,
Content: schemas.MessageContent{ContentStr: &userMessage2},
},
}
response, err := client.ChatCompletionRequest(ctx, &schemas.BifrostRequest{
Provider: schemas.Anthropic,
Model: "claude-3-sonnet-20240229",
Input: schemas.RequestInput{
ChatCompletionInput: &conversation,
},
})
response, err := client.ChatCompletionRequest(ctx, &schemas.BifrostRequest{
Provider: schemas.OpenAI, // Primary provider
Model: "gpt-4o-mini",
Input: input, // your input here
Fallbacks: []schemas.Fallback{
{Provider: schemas.Anthropic, Model: "claude-3-sonnet-20240229"},
{Provider: schemas.Vertex, Model: "gemini-pro"},
{Provider: schemas.Cohere, Model: "command-a-03-2025"},
},
})
// Bifrost automatically tries fallbacks if primary fails
// Check which provider was actually used:
fmt.Printf("Used provider: %s\n", response.ExtraFields.Provider)
temperature := 0.7
maxTokens := 1000
stopSequences := []string{"\n\n", "END"}
response, err := client.ChatCompletionRequest(ctx, &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o-mini",
Input: input, // your input here
Params: &schemas.ModelParameters{
Temperature: &temperature,
MaxTokens: &maxTokens,
StopSequences: &stopSequences,
},
})
// Define your tool
weatherTool := schemas.Tool{
Type: "function",
Function: schemas.Function{
Name: "get_weather",
Description: "Get current weather for a location",
Parameters: schemas.FunctionParameters{
Type: "object",
Properties: map[string]interface{}{
"location": map[string]interface{}{
"type": "string",
"description": "City name",
},
"unit": map[string]interface{}{
"type": "string",
"enum": []string{"celsius", "fahrenheit"},
},
},
Required: []string{"location"},
},
},
}
// Make request with tools
auto := "auto"
response, err := client.ChatCompletionRequest(ctx, &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o-mini",
Input: input, // your input here
Params: &schemas.ModelParameters{
Tools: &[]schemas.Tool{weatherTool},
ToolChoice: &schemas.ToolChoice{ToolChoiceStr: &auto},
},
})
// Check if model wants to call tools
if len(response.Choices) > 0 && response.Choices[0].Message.ToolCalls != nil {
for _, toolCall := range *response.Choices[0].Message.ToolCalls {
if toolCall.Function.Name != nil && *toolCall.Function.Name == "get_weather" {
// Handle the tool call
result := handleWeatherCall(toolCall.Function.Arguments)
// Add tool result to conversation and continue
// ... (see MCP documentation for automated tool handling)
}
}
}
// Auto: Model decides whether to call tools
auto := "auto"
toolChoice := &schemas.ToolChoice{ToolChoiceStr: &auto}
// None: Never call tools
none := "none"
toolChoice := &schemas.ToolChoice{ToolChoiceStr: &none}
// Required: Must call at least one tool
required := "required"
toolChoice := &schemas.ToolChoice{ToolChoiceStr: &required}
// Specific function: Must call this specific tool
toolChoice := &schemas.ToolChoice{
ToolChoiceStruct: &schemas.ToolChoiceStruct{
Type: schemas.ToolChoiceTypeFunction,
Function: schemas.ToolChoiceFunction{
Name: "get_weather",
},
},
}
// Image from URL
imageMessage := schemas.BifrostMessage{
Role: schemas.ModelChatMessageRoleUser,
Content: schemas.MessageContent{
ContentBlocks: &[]schemas.ContentBlock{
{
Type: schemas.ContentBlockTypeText,
Text: bifrost.Ptr("What is this image about?"),
},
{
Type: schemas.ContentBlockTypeImage,
ImageURL: &schemas.ImageURLStruct{
URL: "https://example.com/image.jpg",
Detail: &detail, // "high", "low", or "auto"
},
},
},
},
}
// Image from base64
base64Image := "..."
imageMessageBase64 := schemas.BifrostMessage{
Role: schemas.ModelChatMessageRoleUser,
Content: schemas.MessageContent{
ContentBlocks: &[]schemas.ContentBlock{
{
Type: schemas.ContentBlockTypeText,
Text: bifrost.Ptr("What is this image about?"),
},
{
Type: schemas.ContentBlockTypeImage,
ImageURL: &schemas.ImageURLStruct{
URL: base64Image,
},
},
},
},
}
response, err := client.ChatCompletionRequest(ctx, &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o", // Multimodal model
Input: schemas.RequestInput{
ChatCompletionInput: &[]schemas.BifrostMessage{imageMessage},
},
})
// Request with timeout
ctx, cancel := context.WithTimeout(context.Background(), 30*time.Second)
defer cancel()
response, err := client.ChatCompletionRequest(ctx, request)
if err != nil {
if ctx.Err() == context.DeadlineExceeded {
fmt.Println("Request timed out")
}
}
// Cancellable request
ctx, cancel := context.WithCancel(context.Background())
// Cancel from another goroutine
go func() {
time.Sleep(5 * time.Second)
cancel()
}()
response, err := client.ChatCompletionRequest(ctx, request)
// Add request metadata
ctx := context.WithValue(context.Background(), "user_id", "user123")
ctx = context.WithValue(ctx, "session_id", "session456")
// Plugins can access these values
response, err := client.ChatCompletionRequest(ctx, request)
type BifrostResponse struct {
ID string `json:"id"`
Object string `json:"object"`
Choices []BifrostResponseChoice `json:"choices"`
Model string `json:"model"`
Created int `json:"created"`
Usage LLMUsage `json:"usage"`
ExtraFields BifrostResponseExtraFields `json:"extra_fields"`
}
// Access response data
if len(response.Choices) > 0 {
choice := response.Choices[0]
// Text content
if choice.Message.Content.ContentStr != nil {
content := *choice.Message.Content.ContentStr
}
// Tool calls
if choice.Message.ToolCalls != nil {
for _, toolCall := range *choice.Message.ToolCalls {
// Handle tool call
}
}
// Finish reason
if choice.FinishReason != nil {
reason := *choice.FinishReason // "stop", "length", "tool_calls", etc.
}
}
// Provider metadata
providerUsed := response.ExtraFields.Provider
latency := response.ExtraFields.Latency
tokenUsage := response.Usage
response, err := client.ChatCompletionRequest(ctx, request)
if err != nil {
// Check if it's a Bifrost error
if err.IsBifrostError {
fmt.Printf("Bifrost error: %s\n", err.Error.Message)
}
// Check for specific error types
if err.Error.Type != nil {
switch *err.Error.Type {
case schemas.RequestCancelled:
fmt.Println("Request was cancelled")
case schemas.ErrProviderRequest:
fmt.Println("Provider request failed")
default:
fmt.Printf("Error type: %s\n", *err.Error.Type)
}
}
// Check HTTP status code
if err.StatusCode != nil {
fmt.Printf("HTTP Status: %d\n", *err.StatusCode)
}
return
}
// Production configuration
client, initErr := bifrost.Init(schemas.BifrostConfig{
Account: &MyAccount{},
Plugins: []schemas.Plugin{&MyPlugin{}},
Logger: customLogger,
InitialPoolSize: 200, // Higher pool for performance
DropExcessRequests: false, // Wait for queue space (safer)
MCPConfig: &schemas.MCPConfig{
ClientConfigs: []schemas.MCPClientConfig{
{
Name: "weather-tools",
ConnectionType: schemas.MCPConnectionTypeSTDIO,
StdioConfig: &schemas.MCPStdioConfig{
Command: "npx",
Args: []string{"-y", "weather-mcp-server"},
},
},
},
},
})
func main() {
client, initErr := bifrost.Init(config)
if initErr != nil {
log.Fatal(initErr)
}
// Setup graceful shutdown
defer client.Cleanup()
// Handle OS signals for clean shutdown
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
go func() {
<-c
fmt.Println("Shutting down gracefully...")
client.Cleanup()
os.Exit(0)
}()
// Your application logic
// ...
}
func TestChatCompletion(t *testing.T) {
account := &TestAccount{}
client, initErr := bifrost.Init(schemas.BifrostConfig{
Account: account,
})
require.Nil(t, initErr)
defer client.Cleanup()
message := "Hello, test!"
response, err := client.ChatCompletionRequest(context.Background(), &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o-mini",
Input: schemas.RequestInput{
ChatCompletionInput: &[]schemas.BifrostMessage{
{Role: schemas.ModelChatMessageRoleUser, Content: schemas.MessageContent{ContentStr: &message}},
},
},
})
assert.NoError(t, err)
assert.NotNil(t, response)
assert.Greater(t, len(response.Choices), 0)
}
func TestIntegrationChatCompletion(t *testing.T) {
if testing.Short() {
t.Skip("Skipping integration test")
}
// Requires real API key
if os.Getenv("OPENAI_API_KEY") == "" {
t.Skip("OPENAI_API_KEY not set")
}
account := &ProductionAccount{}
client, initErr := bifrost.Init(schemas.BifrostConfig{
Account: account,
})
require.Nil(t, initErr)
defer client.Cleanup()
// Test actual request
message := "What is 2+2?"
response, err := client.ChatCompletionRequest(context.Background(), &schemas.BifrostRequest{
Provider: schemas.OpenAI,
Model: "gpt-4o-mini",
Input: schemas.RequestInput{
ChatCompletionInput: &[]schemas.BifrostMessage{
{Role: schemas.ModelChatMessageRoleUser, Content: schemas.MessageContent{ContentStr: &message}},
},
},
})
assert.NoError(t, err)
assert.Contains(t, *response.Choices[0].Message.Content.ContentStr, "4")
}
Was this page helpful?